3.1.88 \(\int \frac {\csc ^6(a+b x)}{\sqrt {d \tan (a+b x)}} \, dx\) [88]

Optimal. Leaf size=65 \[ -\frac {2 d^5}{11 b (d \tan (a+b x))^{11/2}}-\frac {4 d^3}{7 b (d \tan (a+b x))^{7/2}}-\frac {2 d}{3 b (d \tan (a+b x))^{3/2}} \]

[Out]

-2/11*d^5/b/(d*tan(b*x+a))^(11/2)-4/7*d^3/b/(d*tan(b*x+a))^(7/2)-2/3*d/b/(d*tan(b*x+a))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 65, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2671, 276} \begin {gather*} -\frac {2 d^5}{11 b (d \tan (a+b x))^{11/2}}-\frac {4 d^3}{7 b (d \tan (a+b x))^{7/2}}-\frac {2 d}{3 b (d \tan (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Csc[a + b*x]^6/Sqrt[d*Tan[a + b*x]],x]

[Out]

(-2*d^5)/(11*b*(d*Tan[a + b*x])^(11/2)) - (4*d^3)/(7*b*(d*Tan[a + b*x])^(7/2)) - (2*d)/(3*b*(d*Tan[a + b*x])^(
3/2))

Rule 276

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rule 2671

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Dist[b*(ff/f), Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/ff
)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {\csc ^6(a+b x)}{\sqrt {d \tan (a+b x)}} \, dx &=\frac {d \text {Subst}\left (\int \frac {\left (d^2+x^2\right )^2}{x^{13/2}} \, dx,x,d \tan (a+b x)\right )}{b}\\ &=\frac {d \text {Subst}\left (\int \left (\frac {d^4}{x^{13/2}}+\frac {2 d^2}{x^{9/2}}+\frac {1}{x^{5/2}}\right ) \, dx,x,d \tan (a+b x)\right )}{b}\\ &=-\frac {2 d^5}{11 b (d \tan (a+b x))^{11/2}}-\frac {4 d^3}{7 b (d \tan (a+b x))^{7/2}}-\frac {2 d}{3 b (d \tan (a+b x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.18, size = 50, normalized size = 0.77 \begin {gather*} \frac {2 d (-45+28 \cos (2 (a+b x))-4 \cos (4 (a+b x))) \csc ^4(a+b x)}{231 b (d \tan (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Csc[a + b*x]^6/Sqrt[d*Tan[a + b*x]],x]

[Out]

(2*d*(-45 + 28*Cos[2*(a + b*x)] - 4*Cos[4*(a + b*x)])*Csc[a + b*x]^4)/(231*b*(d*Tan[a + b*x])^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.45, size = 60, normalized size = 0.92

method result size
default \(-\frac {2 \left (32 \left (\cos ^{4}\left (b x +a \right )\right )-88 \left (\cos ^{2}\left (b x +a \right )\right )+77\right ) \cos \left (b x +a \right )}{231 b \sin \left (b x +a \right )^{5} \sqrt {\frac {d \sin \left (b x +a \right )}{\cos \left (b x +a \right )}}}\) \(60\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(csc(b*x+a)^6/(d*tan(b*x+a))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/231/b*(32*cos(b*x+a)^4-88*cos(b*x+a)^2+77)*cos(b*x+a)/sin(b*x+a)^5/(d*sin(b*x+a)/cos(b*x+a))^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 48, normalized size = 0.74 \begin {gather*} -\frac {2 \, {\left (77 \, d^{4} \tan \left (b x + a\right )^{4} + 66 \, d^{4} \tan \left (b x + a\right )^{2} + 21 \, d^{4}\right )} d}{231 \, \left (d \tan \left (b x + a\right )\right )^{\frac {11}{2}} b} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^6/(d*tan(b*x+a))^(1/2),x, algorithm="maxima")

[Out]

-2/231*(77*d^4*tan(b*x + a)^4 + 66*d^4*tan(b*x + a)^2 + 21*d^4)*d/((d*tan(b*x + a))^(11/2)*b)

________________________________________________________________________________________

Fricas [A]
time = 0.39, size = 93, normalized size = 1.43 \begin {gather*} \frac {2 \, {\left (32 \, \cos \left (b x + a\right )^{6} - 88 \, \cos \left (b x + a\right )^{4} + 77 \, \cos \left (b x + a\right )^{2}\right )} \sqrt {\frac {d \sin \left (b x + a\right )}{\cos \left (b x + a\right )}}}{231 \, {\left (b d \cos \left (b x + a\right )^{6} - 3 \, b d \cos \left (b x + a\right )^{4} + 3 \, b d \cos \left (b x + a\right )^{2} - b d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^6/(d*tan(b*x+a))^(1/2),x, algorithm="fricas")

[Out]

2/231*(32*cos(b*x + a)^6 - 88*cos(b*x + a)^4 + 77*cos(b*x + a)^2)*sqrt(d*sin(b*x + a)/cos(b*x + a))/(b*d*cos(b
*x + a)^6 - 3*b*d*cos(b*x + a)^4 + 3*b*d*cos(b*x + a)^2 - b*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\csc ^{6}{\left (a + b x \right )}}{\sqrt {d \tan {\left (a + b x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)**6/(d*tan(b*x+a))**(1/2),x)

[Out]

Integral(csc(a + b*x)**6/sqrt(d*tan(a + b*x)), x)

________________________________________________________________________________________

Giac [A]
time = 0.54, size = 58, normalized size = 0.89 \begin {gather*} -\frac {2 \, {\left (77 \, d^{5} \tan \left (b x + a\right )^{4} + 66 \, d^{5} \tan \left (b x + a\right )^{2} + 21 \, d^{5}\right )}}{231 \, \sqrt {d \tan \left (b x + a\right )} b d^{5} \tan \left (b x + a\right )^{5}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(csc(b*x+a)^6/(d*tan(b*x+a))^(1/2),x, algorithm="giac")

[Out]

-2/231*(77*d^5*tan(b*x + a)^4 + 66*d^5*tan(b*x + a)^2 + 21*d^5)/(sqrt(d*tan(b*x + a))*b*d^5*tan(b*x + a)^5)

________________________________________________________________________________________

Mupad [B]
time = 12.40, size = 831, normalized size = 12.78 \begin {gather*} -\frac {41984\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{10395\,b\,d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}-1\right )}-\frac {128\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{35\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}-1\right )}^2}-\frac {7136\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{1155\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}-1\right )}^3}-\frac {1216\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{231\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}-1\right )}^4}-\frac {160\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{99\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}-1\right )}^5}+\frac {\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}\,44864{}\mathrm {i}}{10395\,b\,d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}-\frac {3904\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{1155\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^2}-\frac {\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}\,1088{}\mathrm {i}}{165\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^3}+\frac {320\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{21\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^4}+\frac {\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}\,1600{}\mathrm {i}}{99\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^5}-\frac {64\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1\right )\,\sqrt {-\frac {d\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}{{\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}+1}}}{11\,b\,d\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}+b\,x\,2{}\mathrm {i}}\,1{}\mathrm {i}-\mathrm {i}\right )}^6} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(sin(a + b*x)^6*(d*tan(a + b*x))^(1/2)),x)

[Out]

((exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(1/2)*44864i)/(10395*b*
d*(exp(a*2i + b*x*2i)*1i - 1i)) - (128*(exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i +
 b*x*2i) + 1))^(1/2))/(35*b*d*(exp(a*2i + b*x*2i) - 1)^2) - (7136*(exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i + b*
x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(1/2))/(1155*b*d*(exp(a*2i + b*x*2i) - 1)^3) - (1216*(exp(a*2i + b*x
*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(1/2))/(231*b*d*(exp(a*2i + b*x*2i) - 1
)^4) - (160*(exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(1/2))/(99*b
*d*(exp(a*2i + b*x*2i) - 1)^5) - (41984*(exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i
+ b*x*2i) + 1))^(1/2))/(10395*b*d*(exp(a*2i + b*x*2i) - 1)) - (3904*(exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i +
b*x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(1/2))/(1155*b*d*(exp(a*2i + b*x*2i)*1i - 1i)^2) - ((exp(a*2i + b*
x*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(1/2)*1088i)/(165*b*d*(exp(a*2i + b*x*
2i)*1i - 1i)^3) + (320*(exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(
1/2))/(21*b*d*(exp(a*2i + b*x*2i)*1i - 1i)^4) + ((exp(a*2i + b*x*2i) + 1)*(-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(
exp(a*2i + b*x*2i) + 1))^(1/2)*1600i)/(99*b*d*(exp(a*2i + b*x*2i)*1i - 1i)^5) - (64*(exp(a*2i + b*x*2i) + 1)*(
-(d*(exp(a*2i + b*x*2i)*1i - 1i))/(exp(a*2i + b*x*2i) + 1))^(1/2))/(11*b*d*(exp(a*2i + b*x*2i)*1i - 1i)^6)

________________________________________________________________________________________